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Stage 2 Learning autoregressive model on self-
supervised audio-visual feature sets:

Method

Idea: we use audio-visual
anomaly detection to treat low-
probability examples as fake.

Test-time: we flag fake videos with low log-probability.

Goal: Learning to detect manipulations through self-supervision
without fake videos. Building likelihood function on real data and
leveraging anomaly detection to flag manipulated videos.
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Robustness to unseen perturbation:
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Cross-manipulation generalization:

Cross-dataset generalization:

Anomaly detection: identification of rare items, events, or
observations which deviate significantly from normal patterns.

Temporal localization:
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Background
Video forensics: usually done in a supervised manner but it has
generalization issue.

Stage 1 Learning audio-visual
synchronization feature sets:

Real or Fake
𝒇 Real or Fake

Real or Fake
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Abstract

Diabetic Retinopathy (DR) has become one of the leading causes of vision impair-
ment in working-aged people and is a severe problem worldwide. However, most of the
existing works ignored the ordinal information embedded within the labels. In this pa-
per, we propose a novel model called MTCSNN, a Multi-task Clinical Siamese Neural
Network for Diabetic Retinopathy severity prediction task. In the paper, we utilize the or-
dinal information among labels and add a new difference regression task, which can help
the model learn more discriminative feature embedding for fine-grained classification
tasks. Through comprehensive experiments over the RetinaMNIST dataset, we compare
MTCSNN against benchmark models like ResNet-18, 34, 50. Our results indicate that
MTCSNN outperforms the benchmark models in terms of AUC and accuracy on the test
dataset.
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1 Introduction

With the global increase of diabetes, many consequences are also experiencing a growing
trend in the world. Among these, Diabetic Retinopathy (DR) has been a leading cause of vi-
sion impairment in working-age adults [19]. It was estimated that around 16 million Amer-
icans would be affected by Diabetic Retinopathy by 2050 [24]. To prevent people from
blindness and provide early and proactive assistance, the detection of Diabetic Retinopathy
should be of great importance. A key motivation of our project is to provide accessible
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Audio-visual misalignment: alignment degree between lip motion
and sound (time delay) can be used as a cue for anomaly detection.
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Anomaly

Self-supervised feature sets Generative anomaly detector

Training datasets: Lip Reading Sentences (LRS) 2/3.
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