
Masked Diffusion Captioning for Visual Feature Learning

Chao Feng1,2 Zihao Wei1,3 Andrew Owens1,2

1University of Michigan 2Cornell University 3University of Maryland
https://cfeng16.github.io/mdlm4vfl/

cf583@cornell.edu

Abstract

We learn visual features by captioning images
with an image-conditioned masked diffusion
language model, a formulation we call masked
diffusion captioning (MDC). During training,
text tokens in each image–caption pair are
masked at a randomly chosen ratio, and a de-
coder conditioned on visual features is trained
to reconstruct the original text. After training,
the learned visual features can be applied to
downstream vision tasks. Unlike autoregressive
captioning, the strength of the visual learning
signal in MDC does not depend on each token’s
position in the sequence, reducing the need
for auxiliary objectives. Linear probing experi-
ments across a variety of academic-scale mod-
els and datasets show that the learned visual
features are competitive with those produced
by autoregressive and contrastive approaches.

1 Introduction

Multimodal models that learn the cross-modal
associations between images and language have
driven many recent advances in visual representa-
tion learning (Desai and Johnson, 2021; Radford
et al., 2021; Tschannen et al., 2023). An intuitively
appealing approach is to pose this problem as visual
captioning: first, train an image-conditioned lan-
guage model to generate text captions from images,
and then use its learned visual features for down-
stream tasks. However, the popular formulation
of captioning as autoregressive language model-
ing often yields visual features that perform worse
than those from alternative vision-language learn-
ing approaches. One major reason for this is the
asymmetry in the learning signal (Tschannen et al.,
2023): later text tokens can be predicted so well
from the earlier ones that the image becomes de-
creasingly important as the sequence progresses
from left to right. A variety of approaches have ad-
dressed this issue by augmenting the objective with
right-to-left generation (Desai and Johnson, 2021),
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Figure 1: Learning visual features by masked diffusion
language modeling. We learn visual features by caption-
ing images using an image-conditioned masked diffusion lan-
guage model. After training, features from the visual encoder
can be transferred to downstream computer vision tasks.

contrastive learning (Yu et al., 2022), and parallel
decoding (Tschannen et al., 2023) objectives.

An emerging line of work in the natural lan-
guage processing community has applied masked
diffusion language models (MDLMs) to text gen-
eration (Austin et al., 2021; Sahoo et al., 2024;
Shi et al., 2024). Instead of producing text in a
fixed order, these methods randomly mask tokens
at each iteration and train a model to reconstruct
the original text. During training, the fraction of
masked tokens is chosen randomly, enabling the
model to reconstruct text given arbitrary numbers
of masked tokens. Previous work has shown that
such models can generate high-quality text via an-
cestral sampling, optimize variational bounds, and
learn language features that transfer well to down-
stream tasks (Sahoo et al., 2024).

In this paper, we learn visual features through
masked diffusion captioning (MDC): using an
image-conditioned masked diffusion language
model to generate text captions from images
(Fig. 1). Unlike autoregressive models, the amount
of text conditioning each token receives is not de-
termined by its position in the sequence; instead,
each token provides a position-independent amount
of visual supervision. Since we primarily use cap-
tioning as a means of learning features rather than
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as an end in itself, our approach is closely related
to methods that learn visual features with image-
conditioned BERT (Sariyildiz et al., 2020). How-
ever, instead of using a fixed masking ratio, we
sample ratios randomly during training and weight
the loss as a function of the ratio.

We evaluate our approach on academic-scale
models and datasets, establishing an effective train-
ing recipe for masked diffusion captioning. Our
experiments suggest that the resulting model learns
useful visual features across multiple datasets and
encoder architectures (e.g., CC12M (Changpinyo
et al., 2021) with ViT-B and ViT-L (Dosovitskiy
et al., 2020)). These features achieve performance
that is competitive with autoregressive and con-
trastive methods on a variety of linear probing ex-
periments for visual recognition tasks. We also find
that the model’s ability to approximately estimate
the likelihood of a given caption can be used to
match images to their captions successfully, result-
ing in competitive performance on compositional-
ity benchmarks (Hsieh et al., 2023; Yuksekgonul
et al., 2022). Additionally, we find that image-
conditioned BERT, a special case of our model,
can achieve features competitive with those of other
learning approaches when properly tuned, typically
by choosing a large masking ratio that requires the
model to rely heavily on the visual signal.

2 Related Work

Image captioning for visual representation
learning. Contrastive vision-language pretrain-
ing (Radford et al., 2021; Tschannen et al., 2025;
Zhai et al., 2023; Yu et al., 2022; Sun et al., 2023;
Bolya et al., 2025) learns strong visual features
through the discriminative task of contrastive learn-
ing. There is a line of work that seeks to ob-
tain good visual representations by captioning,
where the model is supervised at the token level.
This paradigm of feature learning through gen-
erative pretraining can produce both visual fea-
tures and captioning models capable of generating
text for specific tasks. VirTex (Desai and John-
son, 2021) utilizes forward (left-to-right) and back-
ward (right-to-left) captioning to learn visual fea-
tures. SimVLM (Wang et al., 2021) treats visual
patches as the prefix and employs a single pre-
fix language modeling objective for supervision.
BLIP (Li et al., 2022a) uses contrastive, binary
matching, and captioning objectives for vision lan-
guage models. Similarly, CoCa (Yu et al., 2022)

leverages both contrastive learning and image cap-
tioning objectives. Recently, CapPa (Tschannen
et al., 2023) has shown that captioning can produce
strong visual encoders as competitive as those from
contrastive learning on large datasets. It augments
the autoregressive captioning objective with par-
allel decoding (i.e., where all tokens are masked,
and the model must reconstruct the text). Follow-
ing this direction, LocCa (Wan et al., 2024) and
SigLIP 2 (Tschannen et al., 2025) employ caption-
ing as a pretraining task. Additionally, there is
a line of prior work (Li et al., 2022a; Lai et al.,
2024; Li et al., 2024b; Fan et al., 2023; Chen et al.,
2024a; Singla et al., 2024) that aims to improve
text quality for image-text pairs. Like those cap-
tioning approaches, we learn visual features via im-
age captioning, but we do so using a single masked
diffusion language modeling objective, instead of
an autoregressive or hybrid approach.

Vision language models. Contrastive learn-
ing methods, such as CLIP (Radford et al.,
2021), have provided scalable and effective ap-
proaches for image-language learning. Large-
scale datasets (Schuhmann et al., 2022; Gadre
et al., 2023; Ordonez et al., 2011; Changpinyo
et al., 2021; Sharma et al., 2018; Krishna et al.,
2017) have contributed significantly to this success.
These models (Radford et al., 2021; Tschannen
et al., 2025; Zhai et al., 2023; Yu et al., 2022; Sun
et al., 2023; Bolya et al., 2025) can perform vi-
sual recognition (Antol et al., 2015; Russakovsky
et al., 2015; Lin et al., 2014) in a zero-shot man-
ner by computing similarities between image and
text embeddings. Recently, with the advancement
of large language models (LLMs) (Achiam et al.,
2023; Touvron et al., 2023a; Bai et al., 2023; Liu
et al., 2024a; Team et al., 2023, 2024), multimodal
models (202, 2023; Wang et al., 2022; Liu et al.,
2023; Hurst et al., 2024; Liu et al., 2024b; Bai et al.,
2025; Chen et al., 2024b; Tong et al., 2024; Li et al.,
2024a; Yang et al., 2023) have been developed that
perform vision tasks through language, given vi-
sual input processed by vision encoders (Radford
et al., 2021; Zhai et al., 2023; Tschannen et al.,
2025). Despite the success of contrastive methods,
they often fail to capture complex relationships
between images and language, such as composi-
tionality (Hsieh et al., 2023).

Autoregressive language models. Autoregres-
sive language models factorize the joint probability
of a sequence into a product of conditional next-



token probabilities and are trained with maximum-
likelihood estimation (teacher forcing) to predict
each token given its left context. The paradigms of
next-token prediction and GPT-style models (Rad-
ford et al., 2018, 2019; Brown et al., 2020) laid
the foundation for the success of large language
models (Achiam et al., 2023; Touvron et al., 2023a;
Bai et al., 2023; Liu et al., 2024a; Team et al., 2023,
2024; Touvron et al., 2023b; Grattafiori et al., 2024;
Guo et al., 2025). Using autoregressive models for
image captioning is also common practice (Vinyals
et al., 2015).

Diffusion language models. Diffusion models
were first proposed by Sohl-Dickstein et al. (2015)
and later popularized for continuous data by
DDPM (Ho et al., 2020) and score matching (Song
et al., 2020; Song and Ermon, 2019). More recently,
diffusion-based language models have gained sig-
nificant attention. These methods can be broadly
divided into two categories: (1) embedding-space
diffusion (Li et al., 2022b) and (2) discrete-state
diffusion (He et al., 2022; Austin et al., 2021;
Hoogeboom et al., 2021; Lou et al., 2023; Sa-
hoo et al., 2024; Shi et al., 2024; Zheng et al.,
2024; Ou et al., 2024; Nie et al., 2024, 2025).
Sohl-Dickstein et al. (2015) first introduced dif-
fusion models with discrete state spaces over bi-
nary random variables, which were extended by
Hoogeboom et al. (2021) to categorical data us-
ing uniform categorical noise. D3PM (Austin
et al., 2021) introduced various transition matrices
(uniform, absorbing, discretized Gaussian, and to-
ken embedding distance) for discrete-time Markov
chains, while Campbell et al. (2022) extended this
to continuous-time Markov chains (CTMC). Con-
crete score matching (Meng et al., 2022) general-
ized score matching (Song and Ermon, 2019) to
discrete domains, and SEDD (Lou et al., 2023) fur-
ther proposed score entropy for optimization. Both
MDLM (Sahoo et al., 2024) and MD4 (Shi et al.,
2024) derived simplified expressions of the ELBO
for masked diffusion language models. Other
work (Zheng et al., 2024; Ou et al., 2024) has sug-
gested that input time embeddings are unnecessary
for discrete diffusion language models. More re-
cently, SMDM (Nie et al., 2024) demonstrated the
scalability of masked diffusion language models,
and LLaDA (Nie et al., 2025) scaled them to rel-
atively large sizes. Building on these advances,
our paper focuses on applying masked diffusion
language models to visual representation learning

through image captioning.

Vision-language masked modeling. A variety of
recent methods have learned visual feature learning
used masked language modeling (Li et al., 2019;
Sun et al., 2019; Tan and Bansal, 2019; Li et al.,
2020b,a; Lu et al., 2019; Chen et al., 2020; Su et al.,
2019; Zhou et al., 2020; Li et al., 2021). However,
these methods have typically focused on learning
joint visual-linguistic representations through early
fusion. Sariyildiz et al. (2020) first identifies can-
didate tokens in the caption that correspond to vi-
sual concepts, typically nouns, adjectives, or verbs,
then randomly masks one of them and trains the
model to predict it using both the image and the
surrounding text. Similarly, Geng et al. (2022) and
Swerdlow et al. (2025) extend masked modeling
to both vision and language. In contrast, our work
mainly focuses on learning visual representations
from the captioning objective only by using masked
diffusion language modeling. It avoids the need to
choose a single (possibly dataset-dependent) mask-
ing ratio, and can directly generate text.

3 Method

We propose to learn visual features by generat-
ing text captions from images using an image-
conditioned masked diffusion language model,
an approach we call masked diffusion caption-
ing (MDC).

3.1 Preliminaries
We review masked diffusion language modeling.

Masked language modeling. The popular Bidi-
rectional Transformer (BERT) (Devlin et al., 2019;
Liu et al., 2019) model learns language represen-
tations via masked language modeling (MLM).
Given a sequence x1:N , a mask set M of token
indices is sampled and forms a corrupted sequence
x̃1:N by replacing tokens in M with [MASK] (or a
random/unchanged token). The training loss is:

LMLM = − 1

|M |
∑
i∈M

log pθ
(
xi
∣∣ x̃1:N ). (1)

Masked diffusion language model (MDLM).
MDLM (Sahoo et al., 2024) converts BERT-style
models into generative masked diffusion models.
Let x0 be a text token with K categories, where
K is the size of the vocabulary X = 1, . . . ,K
(K = |X |). MDLM adds a [MASK] token to the
vocabulary (as an absorbing state), which functions
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Figure 2: Learning visual features using masked diffusion captioning. (a) We train an image-conditioned masked diffusion
language model to learn visual features. Given an image and its corresponding text caption, we randomly mask text tokens in
the caption. We then reconstruct the caption, using a decoder that is conditioned on visual features (obtained from a separate
encoder network) and the text tokens. In each training iteration, we sample a time step t that determines a masking ratio and a
cross-entropy weight. T = 0 means no masked token while T = 1 means sequence is fully masked. (b) During sampling, we
start with a fully masked sequence containing N ′ mask tokens. We then iteratively denoise N ′ steps to obtain a full caption.

similarly to the mask token used in BERT (Devlin
et al., 2019) and in conditional masked language
models (Ghazvininejad et al., 2019).

For time steps r and t with r < t, the forward
process is:

q(xt|xr) =

{
δxt,[MASK], if xr = m

Cat
(
xt;

αt
αr

x0 +
(
1 − αt

αr

)
m

)
, if xr ̸= m

(2)

where δ is the delta function, xt is the one-hot
encoding of xt on timestep t, m is the one-hot en-
coding of [MASK], and αt is the predefined noise
schedule between 0 and 1, which is a strictly de-
creasing function of t. At each time step, xt re-
mains unchanged or transitions to [MASK], deter-
mined by transition probability. The posterior can
be expressed as:

q(xr|xt,x0) =

{
Cat

(
xr;

(1−αr)m+(αr−αt)x0
1−αt

)
, if xt = m

δxr,xt , if xt ̸= m.
(3)

We train the language model µθ to reconstruct
masked tokens given the unmasked ones. The train-
ing objective (Sahoo et al., 2024) computes the
weighted cross entropy loss for each masked token.
The per-token loss can be written as:

LNELBO = Et
[

α′
t

1 − αt
Eq

[
δ
xit,[MASK]

x
i⊤
0 log

(
µ
i
θ

(
x
1:N
t , t

))]]
,

(4)

where x0 is the one-hot encoding for the token (i.e.,
the ground truth for the reconstruction).

3.2 Masked Diffusion Captioning
We apply the masked diffusion language modeling
to the problem of visual captioning, with the goal
of learning visual features.

Training. Each training pair consists of image
I ∈ R3×H×W and its corresponding caption C =
[c0, . . . , cN−1]. We use a standard transformer
encoder-decoder architecture following Tschannen
et al. (2023) as the captioner h. Encoder fϕ takes
image I and produces a sequence of visual features
V = fϕ(I) = [v0, . . . ,vM−1]. These are (late)
fused with the decoder gψ by cross attention to
predict caption C.

Building on the training objective of the
MDLM (Sahoo et al., 2024), we define the loss
for our masked diffusion captioning (MDC). Given
the caption C, MDC chooses a factorized for-
ward process q (Ct|C0,V) =

∏N−1
i=0 q

(
cit|ci0,V

)
,

the learned reverse process is also factorized
pψ (Cr|Ct,V) :=

∏N−1
i=0 q

(
cir|cit, giψ (Ct, t,V)

)
.

Thus, the training objective is:

LMDC = Et

[
α′
t

1 − αt
Eq

[N−1∑
i=0

δ
cit,[MASK]

c
i⊤
0 log

(
g
i
ψ (Ct, t,V)

) ]]
,

(5)

Following recent work (Zheng et al., 2024; Sa-
hoo et al., 2024; Ou et al., 2024; Nie et al., 2025,
2024) we adopt a time-independent model parame-
terization. We omit t from the input for text decoder
gψ, while the entire captioner h still uses the noise
as part of the loss weight α′

t
1−αt (Eq. 5). We use

a linear schedule (Lou et al., 2023; Sahoo et al.,
2024; Shi et al., 2024) for αt, where αt = 1 − t.
The training process is also presented in Alg. 1.

Sampling. Once the captioner h is trained, we
can not only use its visual encoder fϕ for down-
stream tasks but also the decoder gψ to generate
text. Beyond this, we can also use the variational



Algorithm 1 Pseudocode of training for masked
diffusion captioning model.

# imgs: batch of images
# caps: batch of corresponding captions
# img_enc: vision encoder in captioning model
# text_dec: text decoder in captioning model
# t: sampled time step in [0,1] for noise schedule
# B: batch size of minibatch
# L: sequence length for minibatch
# MASK: mask token ID
for imgs, caps in loader: # load a minibatch

img_feats = image_enc(imgs) # sequence of visual tokens
t = uniform(B, 1)
p = uniform(B, L)
masked_caps = caps.clone()
masked_caps[p < t] = MASK
logits = text_dec(masked_caps, img_feats)
loss = (1/t) * cross_entropy(logits[p < t], caps[p < t])
loss.backward()

lower bound log pψ(C|fϕ(I)) to perform classifica-
tion tasks, by comparing the probability of different
captions (Sec. 4.2). It has been revealed that there
are numerical instability issues in Gumbel-based
categorical sampling (Zheng et al., 2024), so we
choose to use the token-by-token decoding strat-
egy inspired by (Ghazvininejad et al., 2019; Chang
et al., 2022; Nie et al., 2025; Zheng et al., 2024;
Nie et al., 2024) for image captioning. Specifically,
with a predefined sequence length of N ′ gener-
ated tokens, masked diffusion captioning employs
N ′ denoising steps. Starting from a fully masked
sequence, the denoiser (decoder) performs predic-
tions for all masked tokens at each iteration.

We use greedy decoding for our captioning ex-
periments. At each masked position, we use the
maximum probability assigned by the model across
its vocabulary as a proxy for the confidence score
of the predicted token. In each iteration, the single
masked token with the overall highest confidence
score across all predictions is then revealed (i.e.,
unmasked). All other tokens that were masked at
the beginning of the iteration remain masked for
the subsequent iteration:

xit−1 =


xit, if xit ̸= [MASK]

argmax
(
ηi
)
, if max

j
ηij > max

y ̸=i
(max

k
ηyk)

[MASK], otherwise

(6)

where ηij = giψ(x
1:N ′
t , fϕ(I))j .

Once a token is unmasked, it remains fixed
throughout the rest of the denoising process. This
strategy can make sure all [MASK] tokens are un-
masked at the end of the denoising process. Com-
pared with Gumbel-based categorical sampling,
this denoising strategy is more efficient since no in-
termediate denoising step is wasted. Additionally,
the denoising process can refine generated captions
and mitigate uncertainties in parallel decoding. The

training and sampling processes are also illustrated
in Fig. 2.

4 Experiments

We pretrain our models and benchmark them
against other approaches.

4.1 Implementation Details

Pretraining data. We pretrain models on
three vision–language datasets: Conceptual 3M
(CC3M) (Sharma et al., 2018), Conceptual 12M
(CC12M) (Changpinyo et al., 2021), and subsets
of Recap-DataComp (Li et al., 2024b). Because of
its relatively small scale, CC3M is used primarily
for schedule search. Both CC3M and CC12M are
directly scraped from the Internet, whereas Recap-
DataComp (Li et al., 2024b) is constructed by re-
captioning the original DataComp dataset (Gadre
et al., 2023) with Llama 3 (Grattafiori et al., 2024).
Figure 3 presents the tokenized caption length dis-
tributions across these datasets.
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Figure 3: Dataset caption length distribution. We visu-
alize caption length distribution for CC3M (Sharma et al.,
2018), CC12M (Changpinyo et al., 2021), and a 10M ran-
domly sampled subset of Recap-DataComp (Li et al., 2024b)
after tokenization.

Pretraining details and baselines. We pretrain
three vision-language models from scratch for eval-
uation: CLIP (Radford et al., 2021), autoregres-
sive captioning (ARC), and masked diffusion cap-
tioning (MDC), all implemented based on Open-
CLIP (Cherti et al., 2023). To ensure a fair com-
parison, all models are trained with the same set of
hyperparameters.

For captioning models (ARC and MDC), we use
ViT-B/32, ViT-B/16, and ViT-L/14 (Dosovitskiy
et al., 2020) as the vision encoder backbones. For
ViT-B, the multimodal text decoder is a 12-layer
Transformer decoder with 8 attention heads and a
hidden size of 512, where each layer sequentially
performs text self-attention, followed by image-



text cross-attention. For ViT-L, multimodal text de-
coder consists of 12 layers with 12 attention heads
and hidden size of 768. For text self-attention,
ARC employs causal self-attention, while MDC
utilizes bidirectional self-attention. Additionally,
during training of MDC, only non-padding tokens
are used as supervision signals, which can ensure
the fair comparison between ARC and MDC. We
use [0.5, 1.0] as the default noise schedule of t for
MDC. The CLIP models use the same vision back-
bones but replace the text decoders with Trans-
former encoders that follow the same architecture
as the multimodal text decoders. Input images are
resized to 224×224, and text sequences are padded
or truncated to 77 tokens.

We optimize all models using the AdamW opti-
mizer (Loshchilov and Hutter, 2017) (see hyperpa-
rameter setups in the Appendix) and cosine learn-
ing rate decay. Training is conducted with a batch
size of 128 per GPU (64 for ViT-L with 2 gradi-
ent accumulation steps). Specifically, we use 8
NVIDIA L40S GPUs for training.

4.2 Benchmarking Masked Diffusion
Captioning

Learning from image alt-text pairs. We first
train all methods with ViT-B and ViT-L on
CC12M (Sharma et al., 2018) and use linear prob-
ing to evaluate visual representations. Follow-
ing prior work (Tschannen et al., 2023), we use
global average pooling (GAP) of the encoder out-
put sequence for visual representations to evalu-
ate autoregressive captioning and masked diffu-
sion captioning models. The feature of [CLS] to-
ken (pre-logits layer) is used for CLIP. We use
CLIP-benchmark (LAION-AI, 2023) across stan-
dard datasets including ImageNet-1k (Russakovsky
et al., 2015), Food101 (Bossard et al., 2014),
CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), and Pets (Vedaldi,
2012). See hyperparameter setups for linear prob-
ing in the Appendix. As shown in Tab. 1, masked
diffusion captioning achieves performance com-
parable to autoregressive captioning in terms of
average accuracy, demonstrating that it can learn
visual representations from image alt-text pairs ef-
fectively.

Learning from rich textual descriptions. Many
captions in CC12M (Changpinyo et al., 2021) are
noisy and not descriptive enough. To test the capa-
bility of models to learn from rich textual descrip-
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Figure 4: Comparison to image-conditioned BERT with
different masking ratios. We compare our method against
BERT with varying masking ratios, including 100% (par-
allel decoding). While BERT with certain masking ratios
achieves performance close to ours, our method adopts a uni-
fied schedule, avoiding the need to tune the masking ratio on
each dataset.

tions, we pretrain models on a randomly selected
10M subset of Recap-DataComp (Li et al., 2024b)
mentioned in Sec. 4.1, where the tokenized length
distribution is presented in Fig. 3. We use linear
probing to evaluate learned features. As reported
in Tab. 1, even when trained with twice the default
batch size (denoted as CLIP-LB), CLIP struggles to
learn strong visual features from detailed captions,
consistent with prior findings (Li et al., 2024b;
Zhang et al., 2024). Results in Tab. 1 suggest that
masked diffusion captioning can learn effective vi-
sual features from descriptive captions. Tab. 1 also
indicates one potential advantage of captioning-
based methods (autoregressive and masked diffu-
sion): they can effectively learn visual representa-
tions from long contexts.

Comparison with masked language model vari-
ants. We compare our masked diffusion caption-
ing to other masked model variants: 1) BERT with
varying masking ratios and 2) Parallel Decoding
with 100% masking ratio. Results of linear prob-
ing are presented in Fig. 4. When masking ra-
tio is low, such as 15%, the model can often re-
construct masked tokens using surrounding con-
text, particularly when the masked ones are se-
mantically uninformative words like “a” or “the”.
This shortcut limits the model’s reliance on visual
input and hinders the learning of meaningful vi-
sual representations. In contrast, Parallel Decod-
ing (100% masking ratio), which masks all tokens
and requires them to be generated simultaneously
based solely on the image, entirely ignores lan-
guage structure. This not only impairs the model’s
ability to capture linguistic patterns but also bur-
dens it with the dual challenge of learning both
language structure and visual features. As a re-
sult, the pretraining task becomes more difficult,



Table 1: Linear probing results. To test the learned visual features, we evaluate CLIP, autoregressive captioning (ARC), and
masked diffusion captioning (MDC) on several benchmarks by linear probing. Note that CLIP-LB uses twice the default batch
size during pretraining, and its performance is shown in gray. The best results are in bold, and the second best are colored in
blue. The evaluation metric is accuracy.

Backbone Dataset Method ImageNet-1K Food101 CIFAR-10 CIFAR-100 Pets Average

ViT-B/32

CC12M
CLIP 57.2 66.4 89.2 70.9 74.8 71.7
ARC 54.2 67.7 87.5 68.3 70.0 69.5

MDC (Ours) 54.8 64.5 88.4 69.3 66.7 68.7

Recap-DataComp-10M

CLIP-LB 55.5 66.4 91.0 75.4 66.1 70.9

CLIP 53.1 66.0 90.5 75.0 63.9 69.7

ARC 61.4 76.0 94.1 79.1 70.7 76.3
MDC (Ours) 60.7 72.1 93.9 78.6 67.6 74.6

ViT-B/16

CC12M
CLIP 67.3 76.5 91.5 74.7 82.3 78.5
ARC 64.7 79.0 91.1 72.8 79.4 77.4

MDC (Ours) 65.9 76.0 91.6 75.1 77.3 77.2

Recap-DataComp-10M

CLIP-LB 62.8 74.4 92.4 77.8 73.6 76.2

CLIP 60.4 73.1 92.3 77.2 71.0 74.8

ARC 69.5 84.5 95.4 81.3 72.4 80.6
MDC (Ours) 69.0 81.3 95.2 81.6 73.9 80.2

ViT-L/14

CC12M
CLIP 70.1 79.2 93.9 77.7 84.3 81.0
ARC 69.7 79.8 92.7 76.1 82.9 80.2

MDC 69.9 78.8 93.0 76.7 84.6 80.6

Recap-DataComp-10M

CLIP-LB 64.8 76.3 93.4 78.6 75.4 77.7

CLIP 62.1 75.1 93.1 78.1 73.2 76.3

ARC 71.2 84.8 96.1 82.7 81.9 83.3
MDC (Ours) 71.6 83.4 95.3 81.4 83.8 83.1

leading to slower convergence and weaker visual
representations. Thus, by tuning the masking ratio
for each dataset (Fig. 4), a high-ratio setting could
be found that balances shortcut avoidance and task
difficulty, yielding good performance. However,
our method uses a unified time-based schedule that
eliminates the need for such tuning. This design
consistently outperforms fixed-ratio BERT variants
and demonstrates the robustness of our masked
diffusion captioning.

Dataset size scaling. We randomly sample 5M,
10M, 20M, and 30M image-text pairs from Recap-
DataComp-1B (Li et al., 2024b) to pretrain our
method with ViT-B/32 as the visual backbone. Lin-
ear probing results on IN-1k are shown in Fig. 5.
We find that the more image text pairs used for
pretraining, the better performance on the down-
stream tasks. This validates the potential dataset
size scalability of our method.

Vision language compositionality. As men-
tioned in Sec. 3.2, captioning models can use their
likelihood (Tschannen et al., 2023) or its varia-
tional bound to perform classification tasks in a
zero-shot manner. Evaluating the compositionality
of vision language models is a binary classifica-
tion task. Given an image I , one correct caption
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50

60

70

80

Ac
cu

rac
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60.7

66.2 68.4
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Figure 5: Linear probing performance with varying num-
bers of image–text pairs. We randomly sample 5M, 10M,
20M, and 30M pairs from Recap-DataComp-1B (Li et al.,
2024b) for pretraining our method. As the number of im-
age–text pairs increases, the linear probing performance on
IN-1K improves.

Cr = [cr0 , · · · , crNr−1 ], and one manipulated false
caption Cd = [cd0 , · · · , cdNd−1 ], models need to
recognize the true caption Cr. Autoregressive cap-
tioning (ARC) can use factorization of joint proba-
bility as an indicator for binary classification:

log
(
pψ

(
c
0
, · · · , cN−1

))
=

N−1∑
i=0

log
(
pψ

(
c
i|c<i, fϕ(I)

))
,

(7)

fϕ is the visual encoder mentioned in Sec. 3.2. For
masked diffusion captioning (MDC), we use lower
bound. Cn = [c0n, · · · , CN−1

n ] denotes C with n
masked tokens for each caption C. Therefore, the
lower bound is (Ou et al., 2024; Nie et al., 2025;
Zheng et al., 2024):



Table 2: Vision language compositionality evaluation. We evaluate compositionality of models on two benchmarks:
ARO (Yuksekgonul et al., 2022) and SugarCrepe (Hsieh et al., 2023).

Method
ARO SugarCrepe

relation attribute coco order flickr30k order add replace swap

CLIP 53.6 59.7 27.2 29.5 66.5 72.8 61.3
ARC 82.7 76.0 97.7 98.4 97.6 77.4 76.9
MDC (Monte Carlo) 85.1 84.3 89.0 89.0 85.6 75.8 75.2
MDC (Heuristic) 84.6 81.2 98.4 98.8 97.8 77.9 78.5

log
(
pψ

(
c0, · · · , cN−1

))
≥

N∑
n=1

Eq
[ 1
n

N−1∑
i=0

δcin,[MASK] log
(
pψ

(
ci0|Cn, fϕ(I)

)) ]
. (8)

We use Monte Carlo estimate for t to get lower
bound for true and false captions, where we set
the number of forward processes to 1024 for each
caption. Then the lower bound can be used as
a proxy for classification. In addition, since our
classification task requires a discriminative score
rather than a full perplexity measure (which can be
computationally demanding), we propose a more
efficient heuristic variant that also achieves bet-
ter performance. Starting with a fully masked se-
quence, we perform N denoising steps, equiva-
lent to the caption length |C|. In each step, we
identify the masked position with the highest pre-
dicted confidence (see Sec. 3.2) and record the
log-likelihood of the ground-truth token from cap-
tion C at this position. This ground-truth token
then replaces [MASK], and the updated sequence is
fed into the subsequent step. The sum of these N
log-likelihoods constitutes the final classification
score. We evaluate all models on ARO (Yuksek-
gonul et al., 2022) and SugarCrepe (Hsieh et al.,
2023) benchmarks. As presented in Tab. 2, MDC
outperforms CLIP and ARC, suggesting that the
masked diffusion training approach can achieve
strong compositionality performance.

Image captioning. To evaluate image caption-
ing capability of autoregressive captioning and
masked diffusion captioning, we finetune them on
MSCOCO (Lin et al., 2014) and Flickr30k (Plum-
mer et al., 2015) respectively, where they are both
pretrained on CC12M (Changpinyo et al., 2021).
For reference, we also test a publicly available pre-
trained and finetuned (on MSCOCO) checkpoint of
CoCa (Yu et al., 2022) with the same vision back-
bone for reference. Due to the limitation of masked
diffusion language models, vanilla masked diffu-
sion captioning can only generate captions with a

fixed sequence length, so we need to specify the
output length at the beginning of sampling. There-
fore, we use three variants of MDC: 10 tokens, 15
tokens, and 20 tokens for output. We use greedy
decoding as mentioned in Sec. 3.2. Beam search
with a beam size of 6 is employed for autoregres-
sive captioning. In addition to standard caption-
ing metrics, we conduct a reference-free evalua-
tion using Qwen2.5-VL-72B (Bai et al., 2025) as
an LLM judge. For each image, the judge com-
pares captions generated by four models (MDC-
10/15/20 and ARC) and selects the best one. The
selection is guided by the following prompt, which
is appended with the four letter-labeled captions:
“Which caption best depicts the image and
is also coherent (no duplicate words or
awkward phrasing)?” We report each model’s
selection rate: the proportion of images for which
Qwen2.5-VL selects that model’s caption as best.
Results in Tab. 3 demonstrate that masked diffu-
sion captioning can sample reasonable captions
(see qualitative results in the Appendix). The pre-
defined sequence length of masked diffusion cap-
tioning might favor length-sensitive evaluation met-
rics, so those scores are not strictly comparable. In
addition, Qwen2.5-VL might prefer autoregressive
captioning since it is also trained with the autore-
gressive objective. A comprehensive comparison
between autoregressive captioning and masked dif-
fusion captioning needs further research.

4.3 Analysis of Design Choices

We analyze certain design choices of masked diffu-
sion captioning by linear probing on ImageNet-1k.

Table 4: Ablation on t. We compare masked diffusion cap-
tioning (MDC) with its loss variant pretrained on CC12M and
Recap-DataComp-10M. We evaluate them by linear probing
on ImageNet-1K.

Method CC12M Recap-DataComp-10M

MDC (w/o t) 54.0 59.5
MDC 54.8 60.7



Table 3: Image captioning evaluation. We evaluate autoregressive captioning (ARC), masked diffusion captioning (MDC),
and CoCa (Yu et al., 2022) on MSCOCO (Lin et al., 2014) and Flickr30k (Plummer et al., 2015) (B@4: BLEU@4 (Papineni
et al., 2002), M: METEOR (Banerjee and Lavie, 2005), C: CIDEr (Vedantam et al., 2014), S: SPICE (Anderson et al., 2016),
RL: ROUGE-L (Lin, 2004), LLM: we use Qwen2.5-VL (Bai et al., 2025) to compare four generated captions for single
image and select preferred one, and report each model’s selection rate by Qwen for the whole evaluation set). Performance of
CoCa is represented in gray for reference. *While we report autoregressive captioning performance metrics, we note that the
autoregressive model does not have access to the target sequence length during the generation process, in contrast to MDC, and
as a result, their performance is not directly comparable.

Method
sequence length MSCOCO Flickr30k

MSCOCO Flickr30k B@4 M C S RL LLM B@4 M C S RL LLM

CoCa – – 21.95 21.41 67.61 20.92 43.12 – – – – – – –
ARC* – – 16.0 23.9 48.8 17.4 38.6 33.9 10.1 20.2 19.3 13.4 30.8 30.2
MDC 10 10 20.7 14.3 64.7 16.0 42.2 19.2 11.3 17.9 20.5 10.8 30.3 18.0
MDC 15 15 17.6 23.1 51.1 18.3 40.7 23.6 15.3 21.4 28.6 14.9 35.0 25.7
MDC 20 20 13.6 31.9 24.1 18.6 37.0 23.3 13.8 21.7 20.6 15.5 34.3 26.0

Necessity of t. To assess the necessity of t in the
training objective, we perform an ablation study by
removing t from the weighted cross-entropy loss
during pretraining. The model then essentially be-
comes CMLM (Ghazvininejad et al., 2019). The
results, presented in Tab. 4, show linear probing per-
formance drops for models trained on both CC12M
and Recap-DataComp-10M. This suggests that the
loss scaling factor t plays a critical role in learning
effective visual representations.

Noise schedule. During the training of masked
diffusion models, the noise level (masking ratio)
of each step is determined by t sampled from the
interval [ωl, ωu]. The vanilla masked diffusion
model with linear schedule uses ωl = 0, ωu = 1.
However, we find that loss is very unstable when
pretrained on CC3M, where many captions are
very short. This resonates with findings from
prior work (Arriola et al., 2025). Thus, to ana-
lyze the effect of the sampling interval of t, we ex-
periment with varying noise schedules on CC3M,
and the results are shown in Tab. 5. We find
that ωl = 0.5, ωu = 1 achieves the best perfor-
mance and use this noise schedule as the default
for masked diffusion captioning.

Table 5: Analysis of noise schedule. We test masked dif-
fusion captioning pretrained on CC3M with different noise
schedules by linear probing on ImageNet-1K.

Schedule [0.0, 1.0] [0.3, 0.8] [0.4, 0.9] [0.5, 1.0]

IN1k Acc. 29.3 36.1 38.6 39.2

5 Limitations

Both the pretraining dataset scale (on the order of
10M image-caption pairs) and the model size are
at the academic scale. Training masked diffusion
captioning on datasets that contain undesirable con-
tents may result in the learning of biased or harmful

visual representations and the generation of mali-
cious captions.

6 Conclusion

In this work, we introduce masked diffusion cap-
tioning (MDC), an image-conditioned masked dif-
fusion language model designed to learn visual rep-
resentations. Our results demonstrate that masked
diffusion captioning effectively learns visual fea-
tures, outperforming previous masked language
modeling variants by using a unified noise sched-
ule. In addition, masked diffusion captioning can
generate reasonable captions and exhibits strong
vision-language compositionality. We conduct eval-
uations to establish an effective training recipe for
masked diffusion captioning. Overall, our study
suggests that masked diffusion language models
offer a compelling alternative to autoregressive ap-
proaches for learning visual representations from
image caption pairs.
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A Hyperparameters for Pretraining

Here we present the hyperparameters we used for
pretraining the models with ViT-B and ViT-L based
on datasets in Table 6, Table 7, and Table 8. All
models share the same hyperparameter for pre-
training. The exception is that we apply gradient
norm clipping as shown in Table 8 during train-
ing of autoregressive captioning with ViT-L/14 on
CC12M (Changpinyo et al., 2021) to stabilize the
training process.

Table 6: Hyperparameters used to train vision-language
models with ViT-B/32.

config CC12M Recap-DataComp-10M

optimizer AdamW AdamW
base lr 5e-4 5e-4
warmup steps 10,000 10,000
weight decay 0.1 0.1
β1 0.9 0.9
β2 0.98 0.98
batch size 1024 1024
lr schedule Cosine Cosine
epochs 32 32

Table 7: Hyperparameters used to train vision-language
models with ViT-B/16.

config CC12M Recap-DataComp-10M

optimizer AdamW AdamW
base lr 5e-4 5e-4
warmup steps 10,000 10,000
weight decay 0.2 0.2
β1 0.9 0.9
β2 0.98 0.98
batch size 1024 1024
lr schedule Cosine Cosine
epochs 32 32

Table 8: Hyperparameters used to train vision-language
models with ViT-L/14.

config CC12M Recap-DataComp-10M

optimizer AdamW AdamW
base lr 4e-4 4e-4
warmup steps 10,000 10,000
weight decay 0.2 0.2
β1 0.9 0.9
β2 0.98 0.98
batch size 1024 1024
lr schedule Cosine Cosine
epochs 32 32
grad norm (for AR only) 1.0 –

B Hyperparameters for Linear Probing

Generally, we adopt the default linear prob-
ing hyperparameters provided by CLIP-
benchmark (LAION-AI, 2023): batch size
64, 10 epochs, learning rate 0.1.
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Figure 6: Examples of captioning results. We show
three examples sampled from MSCOCO Karpathy-test
split. MDC-10/15/20 means the length of the output
sequence is 10/15/20 for masked diffusion captioning.

C Diffusion Preliminary

Diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2020) have the for-
ward and reverse Markov processes. Given a
clean instance x0 (e.g., image) from the target
distribution, forward process gradually corrupts
it x0x1 . . .xT by xt ∼ q (xt|xt−1). For instance,
Gaussian noise is gradually added: q(xt|xt−1) =
N (xt;

√
αtxt−1, (1− αt) I). The learned reverse

process pθ (xt−1|xt) can move the instance xT
sampled from source distribution towards target
distribution. The training objective of variational
lower bound for pθ is:

L = Eq
[
DKL(q(xT |x0)∥p(xT ))︸ ︷︷ ︸

LT

+
∑
t>1

DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]
(9)

D Qualitative Results of Captioning

We present some qualitative results in Fig. 6, re-
vealing an interesting pattern: masked diffusion
captioning can generate more descriptive words for
captions when longer sampling lengths are speci-
fied.



E Scientific Artifact

In this project, all the dataset we used and their
license are in Tab. 9. We also adapted our training
and evaluation code from OpenCLIP (Cherti et al.,
2023) and CLIP-benchmark (LAION-AI, 2023).
These codebases are under the MIT License.

Table 9: Licenses for datasets used in this work.
Dataset License
ImageNet-1k (Russakovsky et al., 2015) Custom (Non-commercial, research only)
STL-10 (Coates et al., 2011) BSD License
Food101 (Bossard et al., 2014) MIT License
VOC2007 (Everingham et al., 2010) CC BY 4.0
CIFAR-10 (Krizhevsky et al., 2009) MIT License
CIFAR-100 (Krizhevsky et al., 2009) MIT License
Flowers (Nilsback and Zisserman, 2008) CC BY 4.0
Pets (Vedaldi, 2012) CC BY 4.0
MSCOCO (Lin et al., 2014) CC BY 4.0
Flickr30k (Plummer et al., 2015) Custom (Academic use only)
ARO (Yuksekgonul et al., 2022) MIT License
SugarCrepe (Hsieh et al., 2023) MIT License
CC3M (Sharma et al., 2018) Custom (Use with attribution to Google LLC)
CC12M (Changpinyo et al., 2021) Custom (Use with attribution to Google LLC)
Recap-DataComp-10M (Li et al., 2024b) CC BY 4.0

F Packages

We use pycocoevalcap (Chen et al.) to evaluate
image captioning.

G AI Usage

We use ChatGPT for revising the grammar of the
writing.
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